什么是用户画像?如何进行精准化的用户画像?
来源: | 作者:huang081024 | 发布时间: 2018-07-25 | 782 次浏览 | 分享到:
什么是用户画像?如何进行精准化的用户画像?


随着互联网的不断发展,积累的用户信息、行为记录越来越丰富,同时大数据处理和分析技术也已成熟,可以计算出每一个用户的特征。特征就是从人口基本属性、社会属性、生活习惯、消费行为等信息抽象出来的一个个具体的标签表示。

什么是用户画像?

简单来讲,用户画像是根据用户社会属性、生活习惯和消费行为等信息而抽象出的一个标签化的用户模型。构建用户画像的核心工作即是给用户贴“标签”,而标签是通过对用户信息分析而来的高精炼的特征标识。例如:

李某,女,27岁,天津人,北京工作,银行业,投资顾问,年收入50万,未婚,一套房,喜欢社交,旅游,不喝酒,消费能力强等。

用户画像的七要素

做产品怎么做用户画像,用户画像是真实用户的虚拟代表,首先它是基于真实的,它不是一个具体的人,另外一个是根据目标的行为观点的差异区分为不同类型,迅速组织在一起,然后把新得出的类型提炼出来,形成一个类型的用户画像。一个产品大概需要4-8种类型的用户画像。

用户画像的PERSONA七要素

P代表基本性(Primary):指该用户角色是否基于对真实用户的情景访谈;

E代表同理性(Empathy):指用户角色中包含姓名、照片和产品相关的描述,该用户角色是否引同理心;

R代表真实性(Realistic):指对那些每天与顾客打交道的人来说,用户角色是否看起来像真实人物;

S代表独特性(Singular):每个用户是否是独特的,彼此很少有相似性;

O代表目标性(Objectives):该用户角色是否包含与产品相关的高层次目标,是否包含关键词来描述该目标;

N代表数量性(Number):用户角色的数量是否足够少,以便设计团队能记住每个用户角色的姓名,以及其中的一个主要用户角色;

A代表应用性(Applicable):设计团队是否能使用用户角色作为一种实用工具进行设计决策。

什么是用户画像?如何进行精准化的用户画像?


用户画像的应用

精准营销:

这是运营最熟悉的玩法,从粗放式到精细化,将用户群体切割成更细的粒度,辅以短信、推送、邮件、活动等手段,驱以关怀、挽回、激励等策略。

数据应用:

用户画像是很多数据产品的基础,诸如耳熟能详的推荐系统广告系统。操作过各大广告投放系统的同学想 必都清楚,广告投放基于一系列人口统计相关的标签,性别、年龄、学历、兴趣偏好、手机等等。

用户分析:

虽然和Persona不一样,用户画像也是了解用户的必要补充。产品早期,PM们通过用户调研和访谈的形式了解用户。在产品用户量扩大后,调研的效用降低,这时候会辅以用户画像配合研究。新增的用户有什么特征,核心用户的属性是否变化等等。

数据分析:

这个就不用多提了,用户画像可以理解为业务层面的数据仓库,各类标签是多维分析的天然要素。数据查询平台会和这些数据打通。

什么是用户画像?如何进行精准化的用户画像?


伤不起的用户画像

很多用户画像初衷是好的,但是沦为了形式主义。

举身边的例子,朋友在公司建立用户画像划分了百来个维度。用户消费、属性、行为无所不包。本来这不错啊,但是上线后运营看着这个干瞪眼。

问题包含但不限于,用户有那么多维度,怎么合理地选择标签?我想定义用户的层级,VIP用户应该累积消费金额超过多少?是在什么时间窗口内?为什么选择这几个标准?后续应该怎么维护和监控?业务发生变化了这个标签要不要改?

设立好标签,怎么验证用户画像的有效性?我怎么知道这套系统成功了呢?效果不佳怎么办?它有没有更多的应用场景?

策略的执行也是一个纠结的问题。从岗位的执行看,运营背负着KPI。当月底KPI完不成时,你觉得他们更喜欢选择全量运营,还是精细化呢?

我想不少公司都存在这样类似情况:使用过用户画像一段时间后,发现也就那么一回事,也就渐渐不再使用。

什么是用户画像?如何进行精准化的用户画像?


Google Buzz在问世之前,曾做过近两万人的用户测试,可这些人都是Google自家的员工,测试中他们对于Buzz的很多功能都表示肯定,使用起来也非常流畅。但当产品真正推出之后,却意外收到海量来自实际用户的抱怨。所以,我们需要正确的使用用户画像,小心的找准自己的立足点和发力方向,真切的从用户角度出发,剖析核心诉求,筛除产品设计团队自以为是、并扣以"用户"的伪需求。

用户画像还可以提高决策效率

在现在的产品设计流程中,各个环节的参与者非常多,分歧总是不可避免,决策效率无疑影响着项目的进度。而用户画像是来自于对目标用户的研究,当所有参与产品的人都基于一致的用户进行讨论和决策,就很容易约束各方能保持在同一个大方向上,提高决策的效率。

相关“ 新闻中心”的文章